화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.37, No.23, 18357-18364, 2012
Electrochemical characterization of Pr2CuO4 cathode for IT-SOFC
The electrochemical properties of Pr2CuO4 (PCO) electrode screen-printed on Ce0.9Gd0.1O1.95 (CGO) electrolyte were investigated. PCO was synthesized by a solid-state route from the stoichiometric mixture of oxides at 1273 K, 20 h. Thermogravimetric analysis (TGA) of PCO both in air and Ar demonstrated its stability up to 1173 K. X-ray powder diffraction study of the PCO-CGO mixture annealed in air at 1173 K for 100 h did not reveal chemical interaction between materials. The oxygen reduction on porous PCO electrodes applied on CGO electrolyte was studied in a symmetrical cell configuration by AC impedance spectroscopy at OCV conditions at 773-1173 K and p(O2) = 10(-4)-1 atm. Analysis of the data revealed that depending on temperature and oxygen partial pressure different rate-determining steps of the overall oxygen reduction reaction take place. Calculated value of area specific resistance (ASR) of PCO electrode is 1.7 +/- 0.2 Omega cm(2) at 973 K in air and it is constant after 6 subsequent thermocycles. We have found that oxygen reduction on PCO applied on CGO takes mainly place at the triple-phase boundary (TPB) since Adler-Lane-Steele (ALS) model is not valid. Therefore electrochemical characteristics of PCO electrode can be improved by further optimization of both microstructure of the electrode and electrode/electrolyte interface and PCO can be considered as a promising cathode material for intermediate temperature solid oxide fuel cells (IT-SOFC). Copyright (c) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.