화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.38, No.4, 1826-1836, 2013
A novel screening method for hydrogenase-deficient mutants in Chlamydomonas reinhardtii based on in vivo chlorophyll fluorescence and photosystem II quantum yield
In Chlamydomonas reinhardtii, prolonged anaerobiosis leads to the expression of enzymes belonging to various fermentative pathways. Among them, oxygen-sensitive hydrogenases (HydA1/2) catalyze the synthesis of molecular hydrogen from protons and reduced ferredoxin in the stroma. In this work, by analyzing wild type and mutants affected in H-2 production, we show that maximal PSII photosynthetic electron transfer during the first seconds of illumination after a prolonged dark-anaerobiosis period is linearly related to hydrogenase capacity. Based on the specific chlorophyll fluorescence induction kinetics typical of hydrogenase-deficient mutants, we set up an in vivo fluorescence imaging screening protocol allowing to isolate mutants impaired in hydrogenase expression or activity, as well as mutants altered in related metabolic pathways required for energy production in anaerobiosis. Compared to previously described screens for mutants impaired in H-2 production, our screening method is remarkably fast, sensitive and non-invasive. Out of 3000 clones from a small-sized insertional mutant library, five mutants were isolated and the most affected one was analyzed and shown to be defective for the hydrogenase HydG assembly factor. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.