International Journal of Hydrogen Energy, Vol.38, No.27, 12069-12077, 2013
The effect of acetaldehyde and acetic acid on the direct ethanol fuel cell performance using PtSnO2/C electrocatalysts
PtSnO2/C with Pt:SnO2 molar ratios of 9:1, 3:1 and 1:1 prepared by an alcohol-reduction process were evaluated as anodicelectrocatalysts for direct ethanol fuel cell (DEFC). Acetaldehyde, acetic acid and mixtures of them with ethanol were also tested as fuels. Single cell tests showed that PtSnO2/C electrocatalysts have a superior electrical performance for ethanol and acetaldehyde electro-oxidation when compared to commercial Pt3Sn/C-(alloy) and Pt/C electrocatalysts. For all electrocatalysts, no electrical response was observed when acetic acid was used as a fuel. For ethanol electro-oxidation, the main product was acetaldehyde when Pt3Sn/C-(alloy) and Pt/C electrocatalysts were employed. Besides, PtSnO2/C electrocatalysts led to the formation of acetic acid as the major product. CO2 was formed in small quantities for all electrocatalysts studied. A sharp drop in electrical performance was observed when using a mixture of ethanol and acetaldehyde as a fuel, however, the use of a mixture of ethanol and acetic acid as a fuel did not affect the DEFC performance. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.