화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.39, No.1, 54-61, 2014
Exergy analysis of a simulation of the sulfuric acid decomposition process of the SI cycle for nuclear hydrogen production
This article details comprehensive energy and exergy analyses of the sulfuric acid decomposition process of the sulfur-iodine (SI) thermochemical cycle for hydrogen production. Energy and exergy efficiencies of the proposed process were evaluated over a variety of reaction temperatures and pressures. At an atmospheric temperature of 25 degrees C, the calculated values of exergy destruction of the H2SO4 decomposer ranged between 157 kJ/mol and 360 kJ/mol over reaction temperatures of 800-1000 degrees C and pressures between 1 and 50 atm. It was shown that the exergy efficiency of the H2SO4 decomposer improved with an increase in reaction temperature, while reaction pressure had a negative effect on exergy efficiency. Crown Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.