International Journal of Hydrogen Energy, Vol.39, No.4, 1826-1840, 2014
Optimization of molten carbonate fuel cell (MCFC) and homogeneous charge compression ignition (HCCI) engine hybrid system for distributed power generation
In a previous study, a new hybrid system of molten carbonate fuel cell (MCFC) and homogeneous charge compression ignition (HCCI) engine was developed, where the HCCI engine replaces the catalytic burner and produces additional power by using the left-over heating values from the fuel cell stack. In the present study, to reduce the additional cost and footprint of the engine system in a hybrid configuration, the possibility of engine downsizing is investigated by using two strategies, i.e. the use of a turbocharger and the use of high geometric compression ratio for the engine design, both of which are to increase the density of the intake charge and thus the volumetric efficiency of the engine. Combining these two strategies, we suggest a new engine design with similar to 60% of displacement volume of the original engine. In addition, operating strategies are developed to run the new hybrid system under part load conditions. It is successfully demonstrated that the system can operate down to 65% of the power level of the design point, while the system efficiency remains almost unchanged near 63%. Copyright (C) 2013, The Authors. Published by Elsevier Ltd. All rights reserved.