International Journal of Hydrogen Energy, Vol.39, No.11, 6044-6060, 2014
Application of a laser induced fluorescence model to the numerical simulation of detonation waves in hydrogen-oxygen-diluent mixtures
A laser-induced-fluorescence model has been implemented and used to post-process detonation wave numerical simulation results to allow a direct comparison with previous experimental visualizations of detonations in hydrogen oxygen diluent mixtures. The model is first applied to steady one-dimensional simulation results obtained with detailed chemistry. The effects on the fluorescence intensity of the model parameters are examined to explore the dominant processes. The dominant interference process in the experiments carried out to date is the absorption of incident laser light by the high concentration of OH in and behind the reaction zone. The model is then applied to unsteady two-dimensional simulation results obtained with reduced chemical schemes to obtain synthetic PLIF image. The results demonstrate good qualitative agreement between the experimental and calculated laser-induced-fluorescence intensities. The model limitations and the experimental uncertainties are discussed together with a critical evaluation of the modeling approach. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Keywords:Hydrogen;Oxygen;Detonation structure;Numerical simulation;Planar laser-induced-fluorescence