화학공학소재연구정보센터
International Journal of Multiphase Flow, Vol.34, No.6, 580-589, 2008
Linear resonance in viscous films on inclined wavy planes
We study viscous gravity-driven films flowing over periodically undulated substrates. Linear analysis describes steady flow along small amplitude corrugations for films of arbitrary thickness. Solving the resulting system numerically, we demonstrate resonance (or, possibly, near resonance) and identify different behaviours for thin, intermediate and thick films. Approximating the leading-order velocity profile by the free surface value allows for an analytic solution, which - in the limit of high Reynolds numbers - recovers the different regimes and reveals the relevant physical mechanisms. Our results support the view that the resonance is associated with an interaction of the undulated film with capillary-gravity waves travelling against the mean flow direction. As a consequence, the resonance peak is attained under conditions that render the wave phase velocity equal to zero in the laboratory reference frame, and thus permit direct exchange of energy between the steadily deformed film and the free surface. (C) 2008 Elsevier Ltd. All rights reserved.