International Journal of Multiphase Flow, Vol.36, No.11-12, 858-869, 2010
A unified spray model for engine spray simulation using dynamic mesh refinement
This study is based on dynamic mesh refinement and uses spray breakup models to simulate engine spray dynamics. It is known that the Lagrangian discrete particle technique for spray modeling is sensitive to gird resolution. An adequate spatial resolution in the spray region is necessary to account for the momentum and energy coupling between the gas and liquid phases. This study uses a dynamic mesh refinement algorithm that is adaptive to spray particles to increase the accuracy of spray modeling. On the other hand, the accurate prediction of the spray structure and drop vaporization requires accurate physical models to simulate fuel injection and spray breakup. The present primary jet breakup model predicts the initial breakup of the liquid jet due to the surface instability to generate droplets. A secondary breakup model is then responsible for further breakup of these droplets. The secondary breakup model considers the growth of the unstable waves that are formed on the droplet surface due to the aerodynamic force. The simulation results are compared with experimental data in gasoline spray structure and liquid penetration length. Validations are also performed by comparing the liquid length of a vaporizing diesel spray and its variations with different parameters including the orifice diameter, injection pressure, and ambient gas temperature and density. The model is also applied to simulate a direct-injection gasoline engine with a realistic geometry. The present spray model with dynamic mesh refinement algorithm is shown to predict the spray structure and liquid penetration accurately with reasonable computational cost. (C) 2010 Elsevier Ltd. All rights reserved.