화학공학소재연구정보센터
Korea Polymer Journal, Vol.3, No.2, 86-93, October, 1995
Phase Separation Phenomena in Polystyrene Solutions
the phase separation phenomena in polymer solutions were studied via phase diagrams of polystyrene-solvent systems determined by differential scanning calorimetry and turbidimetry method. it was demonstrated that the critical temperatures found in this study and the theta temperatures from the research literature, show a linear relationship as expected from the Shultz-Flory equation. Thermally induced phase separation (TIPS) process was employed to prepare microporous membranes, and the phase separation mechanisms were studied based on the phase diagram for the system. It has been shown that if polymer concentration is close to the critical point and phase separation is initiated in the unstable region, resulting in a spinodal decomposition mechanism, the membrane produced was well interconnected with highly uniform pore sizes and possesses mechanical strength. In contrast, the characteristic membrane morphology associated with polymer concentration being below the critical concentration and phase separation being initiated in the metastable region, resulting in a nucleation and growth mechanism, was poorly interconnected, stringy and/or beady structure which is mechanically fragile.
  1. Olabisi O, Robeson LM, Shaw MT, Polymer-Polymer Miscibility, Academic Press, New York, NY (1979)
  2. Kurata M, Thermodynamics of Polymer Solutions, Trans. H. Fujita, Harwood Academic Publishers, Chur, Switzerland (1982)
  3. Kamide K, Thermodynamicsof Polymer Solutions: Phase Equilibria and Critical Phenomena, Polymer Science Library, Vol. 9, Elsevier, Amsterdam, The Netherlands (1990)
  4. Cahn JW, Trnas. AIME, 242, 166 (1968)
  5. McMaster LP, Chap. 5, in Copolymers, Polyblends, and Composites, Advances in Chemistry Series, No. 142, Ed. N.A.J. Platzer, American Chemical Society, Washington, D.C. (1975)
  6. vanAartsen JJ, Smolders CA, Eur. Polym. J., 6, 1105 (1970) 
  7. Koningsveld R, Kleintjens LA, Schoffeleers HM, Pure Appl. Chem., 39, 1 (1974)
  8. Chu B, Laser Light Scattering: Basic Principles and Practice, 2nd ed., Academic Press, Inc., Boston, MA (1991)
  9. Bae YC, Lambert SM, Soane DS, Prausnitz JM, Macromolecules, 24, 4403 (1991) 
  10. Kim SS, Lloyd DR, Polymer, 33, 1047 (1992) 
  11. Chu B, Linliu K, Xie P, Ying Q, Wang Z, Shook JW, Rev. Sci. Instrum., 62, 2252 (1991) 
  12. vanEmmerik PT, Smolders CA, Eur. Polym. J., 9, 293 (1973) 
  13. Janeczek H, Turska E, Szekely T, Lengyel M, Till F, Polymer, 19, 85 (1978) 
  14. Maderek E, Wolf BA, Polym. Bull., 10, 458 (1983) 
  15. Vandeweerdt P, Berghmans H, Tervoort Y, Macromolecules, 24, 3547 (1991) 
  16. Dobashi T, Nakata M, Kaneko M, J. Chem. Phys., 72, 6685 (1980) 
  17. Caneba GT, Soong DS, Macromolecules, 19, 369 (1986) 
  18. Burghardt WR, Macromolecules, 22, 2482 (1989) 
  19. Kamide K, Iijima H, Matsuda S, Polym. J., 25, 1113 (1993) 
  20. Song SW, Ph.D. Dissertation, Northwestern Univ., Evanston, Illinois (1994)
  21. Tsai FJ, Torkelson JM, Macromolecules, 23, 775 (1990) 
  22. Tsai FJ, Torkelson JM, Macromolecules, 23, 4983 (1990) 
  23. Song SW, Torkelson JM, Polym. Prepr., 34, 496 (1993)
  24. Song SW, Torkelson JM, Macromolecules, 27(22), 6389 (1994) 
  25. Hikmet RM, Callister S, Keller A, Polymer, 29, 1378 (1988) 
  26. Song SW, Torkelson JM, J. Membr. Sci., 98(3), 209 (1995) 
  27. Shultz AR, Flory PJ, J. Am. Chem. Soc., 74, 4760 (1952) 
  28. Flory PJ, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY (1953)
  29. Allcock HR, Lampe FW, Contemparary Polymer Chemistry, Prentice-Hall, Englewood Cliffs, NJ (1981)
  30. Brandrup J, Immergut EH, Polymer Handbook, 3rd ed., A Wiley-Interscience Publishing, John Wiley & Sons, New York, NY (1988)
  31. Hikmet RM, Callister S, Keller A, Polymer, 29, 1378 (1988) 
  32. Li RQ, Can. Met. Quart., 30, 15 (1991)
  33. Schulz GV, Baumann H, Makromol. Chem., 60, 120 (1963)