화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.368, 474-487, 2012
Packing effects on argon and methanol adsorption inside graphitic cylindrical and slit pores: A GCMC simulation study
Using Grand Canonical Monte Carlo simulation, we have studied the effects of confinement on argon and methanol adsorption in graphitic cylindrical and slit pores. Linear chain, zigzag and incomplete helical packing are observed for argon adsorption in cylindrical pores. However, for methanol adsorption different features appear because the electrostatic interactions favour configurations that maximize the hydrogen bonding among methanol molecules. We have found zigzag chains with hydrogen-bonded structures for methanol adsorption in cylindrical and slit pores. To investigate how dense the adsorbed phase is and how many molecules could be packed per unit physical volume of the solid, we consider two different definitions of pore density; one based on the physical volume and the other on the accessible volume. That based on accessible volume gives a measure of the fluid density, while that based on the physical volume gives a measure of how much adsorbate can be stored per unit volume of the adsorbent. It is found that the adsorbate is denser in cylindrical pores, but that slit pores can pack more molecules per unit solid volume. We also discuss the effects on the isosteric heat of argon and methanol of pore size, pore geometry and loading. (C) 2011 Elsevier Inc. All rights reserved.