Journal of Colloid and Interface Science, Vol.372, 245-251, 2012
Preparation and characterization of a novel stimuli-responsive nanocomposite hydrogel with improved mechanical properties
A novel stimuli-responsive organic/inorganic nanocomposite hydrogel (NC hydrogel) with excellent mechanical properties was synthesized by in situ polymerization of 2-(2-methoxyethoxy) ethyl methacrylate (MEO(2)MA), oligo (ethylene glycol) methacrylate (OEGMA) and acrylic acid (AAc), as the polymeric matrix (PMOA), and fibrillar attpulgite (AT), as the reinforcer and cross-linker. The effect of the AT content on the mechanical properties for the swollen and dried NC hydrogels was determined by tensile testing and dynamic mechanical analysis (DMA), respectively. The tensile testing results showed that the incorporation of AT nanoparticles significantly enhanced the mechanical properties of NC hydrogels. As the content of AT increased, the tensile strength, tensile modulus and effective cross-linked chain density increased. The DMA results showed that the storage modulus of AT/PMOA NC hydrogels was increased and the glass transition temperatures shifted to higher temperature compared to the pure PMOA hydrogel, which further indicated that the enhancement of mechanical property depended upon the presence and content of AT. In addition, the faster swelling rates of the NC hydrogels were observed in comparison with the corresponding physically cross-linked PMOA hydrogel, except for 1% AT/PMOA sample. However, the deswelling kinetics of NC hydrogels was obviously retarded. (C) 2012 Elsevier Inc. All rights reserved.