화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.379, 101-106, 2012
Fixed-bed column studies of pentachlorophenol removal by use of alginate-encapsulated pillared clay microbeads
Columns were packed with two alginate/pillared clays microbeads (aluminium-pillared clay and surfactant-modified aluminium-pillared clay). Pentachlorophenol sorption performance was assessed under variable operating conditions: different bed heights, influent pentachlorophenol concentrations and flow rates. These conditions greatly influenced the breakthrough time/volume, the saturation time/volume and the uptake capacity. Higher values of experimental uptake capacities were obtained for the encapsulated surfactant-modified aluminium-pillared clay compared with the encapsulated aluminium-pillared clay, and the values were compared with those obtained with other low-cost sorbents. The experimental breakthrough curves were modelled using Bed Depth Service Time (BDST), Wolborska and Thomas models. Linear relationship was obtained for the BDST model, indicating the suitability of this model; bed capacity increased sharply with the introduction of CTAB in the inorgano-pillared clay. Wolborska model was applied only to the initial part of the curves. Thomas model was no doubt the most suitable description of the adsorption mechanisms for the entire breakthrough curves. Experimental and Thomas model-predicted equilibrium uptake capacities were in accordance. (C) 2012 Elsevier Inc. All rights reserved.