화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.380, 173-181, 2012
Nickel supported carbon nanofibers as an active and selective catalyst for the gas-phase hydrogenation of 2-tert-butylphenol
Nickel supported fishbone carbon nanofibers (CNFs) have been prepared by vacuum impregnation (VI) and homogeneous deposition-precipitation (HDP) methods with different nickel loadings (ca. 5%, 9% and 12%) with the aim to study the influence of the metal incorporation method and the nickel loading in the catalytic activity of gas-phase hydrogenation of 2-tert-butylphenol (2-TBP). Moreover, the influence of the nature of the support was also studied by preparing nickel catalysts supported on other carbon (active carbon (AC) and graphite (G)) and non-carbonaceous materials (alumina (AL) and yttria-stabilized zirconia (YSZ)). Different techniques were employed to characterize both the supports and the final Ni catalysts: atomic absorption spectrometry. N-2 adsorption-desorption analysis, temperature-programed reduction (TPR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Catalytic results revealed that the nickel particle size and support properties affected directly to both the catalytic activity of hydrogenation of 2-TBP, and the rate of secondary reactions such as cis to trans isomerization and 2-tert-butylcyclohexanone (2-TBCN) hydrogenation. (C) 2012 Elsevier Inc. All rights reserved.