화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.408, 59-65, 2013
Photovoltaic performance of bithiazole-bridged dyes-sensitized solar cells employing semiconducting quantum dot CuInS2 as barrier layer material
In this work, the quantum dot CuInS2 layer was deposited on TiO2 film using successive ionic layer absorption and reaction (SILAR) method, and then two bithiazole-bridged dyes (BTF and BIB) were sensitized on the CuInS2/TiO2 films to form dye/CuInS2/TiO2 photoanodes for DSSCs. It was found that the quantum dots CuInS2 as an energy barrier layer not only could effectively improve open-circuit voltage (V-oc) of solar cell, but also increase short-circuit photocurrent (J(sc)) compared to the large decrease in.'s,. of ZnO as energy barrier layer. The electrochemical impedance spectroscopy (EIS) measurement showed that the CuInS2 formed a barrier layer to suppress the recombination from injection electron to the electrolyte and improve open-circuit voltage. Finally, the open-circuit voltage increased about 22 and 27 mV for BTF and BTB-/CuInS2/TiO2-based cells, the overall conversion efficiencies also reached to 7.20% and 6.74%, respectively. (C) 2013 Elsevier Inc. All rights reserved.