Journal of Colloid and Interface Science, Vol.418, 193-199, 2014
Catalytically active and hierarchically porous SAPO-11 zeolite synthesized in the presence of polyhexamethylene biguanidine
Hierarchically porous SAPO-11 zeolite (H-SAPO-11) is rationally synthesized from a starting silicoaluminophosphate gel in the presence of polyhexamethylene biguanidine as a mesoscale template. The sample is well characterized by XRD, N-2 sorption, SEM, TEM, NMR, XPS, NH3-TPD, and TG techniques. The results show that the sample obtained has good crystallinity, hierarchical porosity (mesopores at ca. 10 nm and macropores at ca. 50-200 nm), high BET surface area (226 m(2)/g), large pore volume (0.25 cm(3)/g), and abundant medium and strong acidic sites (0.36 mmol/g). After loading Pt (0.5 wt.%) on H-SAPO-11 by using wet impregnation method, catalytic hydroisomerization tests of n-dodecane show that the hierarchical Pt/SAPO-11 zeolite exhibits high conversion of n-dodecane and enhanced selectivity for branched products as well as reduced selectivity for cracking products, compared with conventional Pt/SAPO-11 zeolite. This phenomenon is reasonably attributed to the presence of hierarchical porosity, which is favorable for access of reactants on catalytically active sites. The improvement in catalytic performance in long-chain paraffin hydroisomerization over Pt/SAPO-11-based catalyst is of great importance for its industrial applications in the future. (C) 2013 Elsevier Inc. All rights reserved.