화학공학소재연구정보센터
Journal of Food Engineering, Vol.61, No.1, 67-81, 2004
Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations
A high spatial resolution (0.5-1.0 mm) hyperspectral imaging system is presented as a tool for selecting better multispectral methods to detect defective and contaminated foods and agricultural products. Examples of direct linear or non-linear analysis of the spectral bands of hyperspectral images that resulted in more efficient multispectral imaging techniques are given. Various image analysis methods for the detection of defects and/or contaminations on the surfaces of Red Delicious, Golden Delicious, Gala, and Fuji apples are compared. Surface defects/contaminations studied include side rots, bruises, flyspecks, scabs and molds, fungal diseases (such as black pox), and soil contaminations. Differences in spectral responses within the 430-900 nm spectral range are analyzed using monochromatic images and second difference analysis methods for sorting wholesome and contaminated apples. An asymmetric second difference method using a chlorophyll absorption waveband at 685 nm and two bands in the near-infrared region is shown to provide excellent detection of the defective/contaminated portions of apples, independent of the apple color and cultivar. Simple and requiring less computation than other methods such as principal component analysis, the asymmetric second difference method can be easily implemented as a multispectral imaging technique. Published by Elsevier Ltd.