화학공학소재연구정보센터
Journal of Food Engineering, Vol.90, No.4, 463-470, 2009
Deacidification of olive oil by countercurrent supercritical carbon dioxide extraction: Experimental and thermodynamic modeling
Supercritical carbon dioxide was used as an extractive solvent to remove free fatty acids from cold-pressed olive oil. Crude oil of different acidity content (from 0.5 to 4.0 wt%) was extracted in a packed column at 313 K and pressures of 180, 234 and 250 bar. The group contribution equation of state was employed to simulate the separation process, representing the oil as a simple pseudo-binary oleic acid + triolein mixture. Despite the simple representation of oil composition to simulate the deacidification process, a satisfactory agreement between the experimental and calculated yields and acidity of raffinates was obtained. The thermodynamic model was employed to study a continuous countercurrent multistage extraction process which yielded a raffinate having acidity lower than 0.7 wt%, when crude olive oil with different FFA content was processed. (C) 2008 Elsevier Ltd. All rights reserved.