Journal of Hazardous Materials, Vol.229, 94-99, 2012
Mesophilic and thermophilic biofiltration of gaseous toluene in a long-term operation: Performance evaluation, biomass accumulation, mass balance analysis and isolation identification
A thermophilic biofilter (TBF) was developed to treat high temperature gaseous toluene (55 C). The performance of TBF was evaluated under various operating conditions, including different inlet concentrations and gas flow rates, and compared with a control mesophilic biofilter (MBF). Furthermore, the leachate, biomass accumulation and pressure drop of filter bed were investigated. The experimental results showed that the TBF achieved high performance removal efficiencies of 90% when the inlet loading was lower than 100 g m(-3) h(-1). Increasing inlet loading resulted in lower performance of TBF compared with MBF. However, the biomass in TBF, in the long-term operation, showed a slow accumulation process than MBF. The specific growth rates of microorganism were 0.0011 day(-1) and 0.0015 day(-1) for TBF and MBF, respectively. The slow growth process in TBF further resulted in a lower pressure drop of filter bed (0.1-0.5 kPa) than that of MBF (7-10 kPa). The leachate from TBF presented a neutral pH and presented a higher TOC contents than those from MBF. The results of three-dimensional fluorescence spectra suggested that the products of toluene biodegradation included some organic acids. A carbon mass balance analysis showed that 47.1% of the removed toluene was converted to biomass in MBF, which was higher than that of MBF with 30.5%. Finally, 16s rRNA gene sequences indicated the dominant microorganisms in the TBF including Brevibacillus sp. and Anoxybacillus sp., while Delftia sp. and Stenotrophomonas sp. in the MBF. (C) 2012 Elsevier B.V. All rights reserved.