Journal of Hazardous Materials, Vol.239, 362-369, 2012
Enhanced effect of water vapor on complete oxidation of formaldehyde in air with ozone over MnOx catalysts at room temperature
At room temperature, the enhanced effect of water vapor on ozone catalytic oxidation (OZCO) of formaldehyde to CO2 over MnOx catalysts and the reaction stability was reported. In a dry air stream, only below 20% of formaldehyde could be oxidized into CO2 by O-3. In humid air streams (RH >= 55%), similar to 100% of formaldehyde were oxidized into CO2 by O-3 and the reaction stability was significantly enhanced. Meanwhile, in situ Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectra of OZCO of HCHO demonstrate that the amount of both monodentate and bidentate carbonate species on MnOx, in the dry stream, increased gradually with time on stream (TOS). However, in the humid stream, almost no accumulation of carbonate species on the catalysts was observed. To clarify the enhanced mechanism, formaldehyde surface reactions and CO2 adsorption/desorption on the fresh, O-3 and O-3 + H2O treated MnOx catalysts were examined comparatively. (C) 2012 Elsevier B.V. All rights reserved.