화학공학소재연구정보센터
Korea Polymer Journal, Vol.6, No.4, 307-311, October, 1998
Adsorption and Desorption Processes of Hexanethiol Self-Assembled Monolayers on Au(111) Studied by Scanning Tunneling Microscopy
Au(111) were studied by scanning tunneling microscopy (STM). The STM study showed the coexistence of two domain structures, (√3 ×√3 )R30。 and c(4×2) superlattice, from hexanethiol SAMs on Au(111) formed after 1 day deposition. This result can be attributed to different adsorbed states of thiol molecule on Au(111) such as thiol monomer and dimer, The new c(4×2) superlattice which shows three different height modulations of symmetry-inequivalent molecules having a hexagonal packed structure to the surface was observed from hexanethiol SAMs after desorption of thiol molecules in diethyl ether. The STM study reveals that desorption of molecules starts from domain boundaries and around etch ptis, and forms missing-rows in highly packed regions. The c(4×2) superlattice as two-dimensional domain structure could be observed from SAM films prepared after a longer deposition or desorption time more than 1 day. Transformation of domain structure from ( √3 ×√3 )R30。 and c(4×2) superlattice might have closely related to the dimerization of adsorbed thiol on gold during SAM growth. This result would support the previousreport by Mohri et al. [Langmuir, 11, 1612 (1995)]. They found that 4-aminobenzenethiol (monomer) on the surfae of gold powder is spontaneously changed to 4,4''-diaminophenol disulfide(dimer) in ethanol using UV and FTIR measurements.
  1. Service RF, Science, 265(5170), 316 (1994) 
  2. Hanken G, Naujok RR, Gray JM, Corn RM, Anal. Chem., 69, 240 (1997) 
  3. Fucks H, Ohst H, Prass W, Adv. Mater., 3, 10 (1991) 
  4. Labinis PE, Whitesides GM, J. Am. Chem. Soc., 114, 9022 (1992) 
  5. Kim T, Chan KC, Crooks RM, J. Am. Chem. Soc., 119(1), 189 (1997) 
  6. Poirier GE, Pylant ED, Science, 272(5265), 1145 (1996) 
  7. Karpovich DS, Blanchard GJ, Langmuir, 13(15), 4031 (1997) 
  8. Ishida T, Tsuneda S, Nishida N, Hara M, Sasabe H, Knoll W, Langmuir, 13(17), 4638 (1997) 
  9. Lio A, Morant C, Ogletree DF, Salmeron M, J. Phys. Chem. B, 101(24), 4767 (1997) 
  10. Hagenhoff B, Spinke J, Benninghoven A, Spinke J, Liley M, Knoll W, Langmuir, 9, 1622 (1993) 
  11. Jordan CF, Frutos AG, Thiel AJ, Corn RM, Anal. Chem., 69, 4339 (1997) 
  12. Poirier GE, Pylant ED, White JM, J. Chem. Phys., 105(5), 2089 (1996) 
  13. Duwez AS, Dipaolo S, Ghijsen J, Riga J, Deleuze M, Delhalle J, J. Phys. Chem. B, 101(6), 884 (1997) 
  14. Fenter P, Eberhardt A, Eisenberger P, Science, 266(5188), 1216 (1994) 
  15. Schonherr H, Ringsdorf H, Langmuir, 12(16), 3891 (1996) 
  16. Nishda N, Hara M, Sasabe H, Knoll W, Jpn. J. Appl. Phys., 35, L799 (1996) 
  17. Schonherr H, Vancso GJ, Langmuir, 13(14), 3769 (1997) 
  18. Biebuyck HA, Bian CD, Whitesides GM, Langmuir, 10(6), 1825 (1994) 
  19. Nishida N, hara M, Sasabe H, Knoll W, Jpn. J. Appl. Phys., 35, 5866 (1996) 
  20. Touzov I, Gorman CB, J. Phys. Chem. B, 101(27), 5263 (1997) 
  21. Yamada R, Uosaki K, Langmuir, 13(20), 5218 (1997) 
  22. Bain CD, Evall J, Whitesides GM, J. Am. Chem. Soc., 111, 7155 (1989) 
  23. Tamada K, Hara M, Sasabe H, Knoll W, Langmuir, 13(6), 1558 (1997) 
  24. Poirier GE, Tarlov MJ, Langmuir, 10(9), 2853 (1994) 
  25. Nishida N, Hara M, SasabeH, Knoll W, Jpn. J. Appl. Phys., 36, 2379 (1997) 
  26. Mohri N, Inoue M, Arai Y, Yoshikawa K, Langmuir, 11(5), 1612 (1995)