Journal of Hazardous Materials, Vol.262, 819-825, 2013
Functional clay supported bimetallic nZVI/Pd nanoparticles used for removal of methyl orange from aqueous solution
Bentonite supported Fe/Pd nanoparticles (B/nZVI/Pd) were synthesized as composites that exhibit functionalities assisting in the removal of methyl orange (MO) from aqueous solution. The results showed that 91.87% of MO was removed using B/nZVI/Pd, while only 85% and 1.41% of MO were removed using nZVI/Pd and bentonite after 10 min, respectively. The new findings include that the presence of bentonite decreased the aggregation of nZVI/Pd and nZVI in the composite played its role as a reductant, while Pd-0 acted as the catalyst to enhance the degradation of MO, which were confirmed by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis analysis and the batch experiments. The increase in B/nZVI/Pd loading led to greater removal efficiency, while decolorization efficiency declined in the presence of anions such as nitrate, sulfite and carbonate, especially nitrate, which decreased the apparent rate constant k(obs) almost 17.06-fold. The kinetics study indicated that the degradation of MO fitted well to the pseudo-first-order model, where the k(obs) was 0.0721 min(-1). Finally, the reactivity of aged B/nZVI/Pd was investigated, and the application of B/nZVI/Pd in wastewater indicated a removal efficiency higher than 93.75%. This provided a new environmental pollution management option for dyes-contaminated sites. (C) 2013 Elsevier B.V. All rights reserved.