Journal of Hazardous Materials, Vol.263, 52-60, 2013
Understanding the adsorptive and photoactivity properties of Ag-graphene oxide nanocomposites
Nanocomposites of graphene oxide (GO) and silver nanoparticles (AgNPs) were synthetized using a practical photochemical silver functionalization. Their photocatalytic activities were evaluated with two dyes, Rhodamine B and Indigo Carmine, under visible-light irradiation. The prepared nanocomposites were characterized by HRTEM, FESEM, XRD, Raman, FTIR and UV-vis absorption spectroscopy. These nanocomposites present new defect domains of sp(3) type in combination with several graphitic functional groups that act as nucleation sites for anchoring AgNPs, while the sp(2)-sp(3) edge defects domains of GO generate the photoactivity. Furthermore, their photocatalytic performances are governed by their large adsorption capacity, and strong interaction with dye chromophores. A comprehensive photocatalytic way underlying the importance of adsorption is suggested to explain the low visible-light responsive photoactivity of the AgNPs-GO nanocomposites and the possible binding-site saturation. Then, the usage of H2SO4 allows the production of ionic species and helps to confirm the strong adsorption of both dyes. The ability to synthesize AgNPs-GO nanocomposites with extensive adsorptive capacity is certainly of interest for the efficient removal of hazardous materials. (C) 2013 Elsevier B.V. All rights reserved.
Keywords:Graphene-based nanocomposites;RhB binding-site saturation;Silver nanoparticles;Graphene adsorption capacity;Graphene oxide sp(3) defects;Strong adsorption