화학공학소재연구정보센터
Journal of Loss Prevention in The Process Industries, Vol.26, No.2, 392-395, 2013
A numerical method to predict flame fractal dimension during gas explosion
Accurate prediction of the flame propagation velocity during a gas explosion is essential to assess its consequences and to evaluate the risk level. The propagating premixed flame is self-turbulized due to the hydrodynamic instability, resulting in a fractal flame structure. It is therefore important for accurate prediction of flame speed to understand the flame's fractal structure in detail and to predict its fractal dimension in particular. Numerical simulations of spherically-propagating flames have been previously attempted for such purposes. There are, however, difficulties to accurately predict the fractal dimension from the result of the numerical simulation of a spherically-propagating flame. In this study, we propose a method to easily predict the fractal dimension based on the numerical simulation of a planar flame. Planar flame propagation is simulated for different sizes of computational domain. The fractal dimension can be determined from the dependence of flame speed on computational domain size. The determined fractal dimension is favorably compared with previous experimental results. (C) 2011 Elsevier Ltd. All rights reserved.