Journal of Molecular Catalysis A-Chemical, Vol.373, 151-160, 2013
Interaction of hydrogen with Cu-Zn mixed oxide model methanol synthesis catalyst
Interaction of hydrogen with model Cu-Zn methanol synthesis catalyst prepared by decomposition of mixed hydroxicarbonate is studied by inelastic neutron scattering, in situ FTIR/MS, and thermal analysis. Reduced (Cu-0.08,Zn-0.92)O mixed oxide accumulates 6H/Cu, mainly as hydride, hydroxyl and formate species. The reduction of copper in the (Cu,Zn)O mixed oxide occurs via a reversible redox interaction with H-2 and absorption of protons as OH--groups with nu =3250 cm(-1) and delta approximate to 1430-1480 cm(-1). Kinetic and thermodynamic parameters of this process are evaluated. The weight loss during the reduction is due to the decomposition of the residual carbonate groups to CO2 via formate intermediates, which occurs in the presence of hydrogen. Exposure of (Cu,Zn)O to air prior to the reduction strongly affects the kinetic parameters of the reduction process. (C) 2013 Elsevier B.V. All rights reserved.
Keywords:Copper-zinc oxide catalyst;Copper reduction;Hydrogen absorption;Inelastic neutron scattering;In situ FTIR