화학공학소재연구정보센터
Macromolecular Research, Vol.22, No.8, 853-858, August, 2014
The Effect of H2O2/Fe2+ Catalytic Oxidation System on the Morphology, Structure and Properties of Flake-Like Poly(2,3-dimethylaniline)
E-mail:
In this work, flake-like poly(2,3-dimethylaniline) (P(2,3-DMA)) with enhanced thermal stability and anticorrosive ability was synthesized by in situ polymerization using H2O2/Fe2+ catalytic oxidation system, comparing with traditional oxidant ammonium persulfate (APS) synthetic method. The structure and morphology of the samples were characterized Fourier transform infrared (FTIR) spectra, X-ray diffraction (XRD) and field-emission scanning electron microscope (FESEM). The experimental results demonstrated that using H2O2/Fe2+ catalytic oxidation system was more inclined to form the two-dimensional P(2,3-DMA) flakes. The enhancement in thermostability and corrosion resistance was attributed to the formation of phenazine-like structures in the polymer chains, which could serve as templates to form the flake-like morphology. In addition, using H2O2/Fe2+ catalytic oxidation system is more environmental friendly than the APS method that can avoid ammonium pollution on aquatic life as well as waters.
  1. Wan MX, Macromol. Rapid Commun., 30(12), 963 (2009)
  2. Hao Y, Zhou B, Wang F, Li J, Deng L, Liu YN, Biosens. Bioelectron., 52, 422 (2014)
  3. Banerjee S, Konwar D, Kumar A, Sens. Actuators B: Chem., 190, 199 (2014)
  4. Van Tuan C, Tuan MA, Van Hieu N, Trung T, Curr. Appl. Phys., 12(4), 1011 (2012)
  5. Wang H, Zhu E, Yang J, Zhou P, Sun D, Tang W, J. Phys. Chem. C, 116, 13013 (2012)
  6. Oyharcabal M, Olinga T, Foulc MP, Lacomme S, Gontier E, Vigneras V, Compos. Sci. Technol., 74, 107 (2013)
  7. Yeh JM, Liou SJ, Lai CY, Wu PC, Chem. Mater., 13, 1131 (2001)
  8. Ma L, Fu D, Gan M, Zhang F, Li Z, Li S, J. Appl. Polym. Sci., 130, 4528 (2013)
  9. Jadhav N, Vetter CA, Gelling VJ, Electrochim. Acta, 102, 28 (2013)
  10. Kalendova A, Prog. Org. Coat., 46, 324 (2003)
  11. Siljeg M, Foglar L, Kukucka M, J. Hazard. Mater., 178(1-3), 572 (2010)
  12. Wang Y, Jing X, Kong J, Synth. Met., 157, 269 (2007)
  13. Zhang HB, Wang JX, Wang Z, Zhang FB, Wang SC, Macromol. Rapid Commun., 30(18), 1577 (2009)
  14. Zhu S, Chen X, Gou Y, Zhou Z, Jiang M, Lu J, Hui D, Polym. Adv. Technol., 23, 796 (2012)
  15. Laslau C, Zujovic Z, Travas-Sejdic J, Prog. Polym. Sci., 35, 1403 (2010)
  16. Ma L, Huang CQ, Gan MY, J. Appl. Polym. Sci., 127(5), 3699 (2013)
  17. Chung YC, Park JS, Shin CH, Choi JW, Chun BC, Macromol. Res., 20(1), 66 (2012)
  18. Kim ES, Kim SH, Lee CH, Macromol. Res., 18(3), 215 (2010)
  19. Baek S, Ree JJ, Ree M, J. Polym. Sci. A: Polym. Chem., 40(8), 983 (2002)
  20. Li GC, Zhang CQ, Li YM, Peng HR, Chen KZ, Polymer, 51(9), 1934 (2010)
  21. Tran HD, Norris I, D'Arcy JM, Tsang H, Wang Y, Mattes BR, Kaner RB, Macromolecules, 41(20), 7405 (2008)
  22. Li XG, Duan W, Huang MR, Yang YL, J. Polym. Sci. A: Polym. Chem., 39(22), 3989 (2001)
  23. Tang Q, Sun X, Li Q, Wu J, Lin J, Huang M, Mater. Lett., 63, 540 (2009)
  24. Song G, Han J, Bo J, Guo R, J. Mater. Sci., 44, 715 (2008)
  25. Stejskal J, Sapurina I, Trchova M, Prog. Polym. Sci., 35, 1420 (2010)
  26. Wang H, Lu Y, Synth. Met., 162, 1369 (2012)
  27. Trchova M, Sedenkova I, Konyushenko EN, Stejskal J, Holler P, Ciric-Marjanovic G, J. Phys. Chem. B, 110(19), 9461 (2006)
  28. Stejskal J, Sapurina I, Trchova M, Konyushenko EN, Holler P, Polymer, 47(25), 8253 (2006)
  29. da Silva JEP, de Faria DLA, de Torresi SIC, Temperini MLA, Macromolecules, 33(8), 3077 (2000)
  30. Lu W, Elsenbaumer RL, Wessling B, Synth. Met., 71, 2163 (1995)
  31. Wessling B, Synth. Met., 85, 1313 (1997)