화학공학소재연구정보센터
Macromolecular Research, Vol.22, No.8, 875-881, August, 2014
Synthesis and Electrochemical Properties of Gel Polymer Electrolyte Using Poly(2-(dimethylamino)ethyl methacrylate-co-methyl methacrylate) for Fabricating Lithium Ion Polymer Battery
E-mail:,
Random copolymers comprising 2-(dimethylamino)ethyl methacrylate (DMAEMA) and methyl methacrylate (MMA) are synthesized by radical polymerization using 2,2′-azobis(2-methylpropionitrile) (AIBN) as an initiator. Gel polymer electrolytes (GPEs) are prepared by in situ thermal curing using different ratios of siloxane-epoxide cross-linker to poly(DMAEMA-co-MMA) and various contents and types of liquid electrolytes. GPEs offer several advantages such as in situ thermal cross-linking without requiring an additional radical initiator, relatively shorter curing time (~3 h) and lower curing temperature. When the ratio of the siloxane-epoxide cross-linker to poly(DMAEMA-co-MMA) is 1:5, the GPE with 98 wt% liquid electrolyte exhibits the highest ionic conductivity of 8.87×10-3 S/cm at 30 ℃. The electrochemical stability window of the GPE is measured to be 5.1 V vs. Li/Li+. A unit cell comprising LiCoO2/GPE/graphite exhibits an initial discharge capacity of 145.6 mAh/g at 0.1 C, and the unit cell has good rate capability and cycling performance.
  1. Scrosati B, Nature, 373(6515), 557 (1995)
  2. Scrosati B, Garche J, J. Power Sources, 195(9), 2419 (2010)
  3. Nishi Y, J. Power Sources, 100(1-2), 101 (2001)
  4. Kobayashi Y, Seki S, Yamanaka A, Miyashiro H, Mita Y, Iwahori T, J. Power Sources, 146(1-2), 719 (2005)
  5. Isken P, Dippel C, Schmitz R, Schmitz RW, Kunze M, Passerini S, Winter M, Lex-Balducci A, Electrochim. Acta, 56(22), 7530 (2011)
  6. Idris NH, Rahman MM, Wang JZ, Liu HK, J. Power Sources, 201, 294 (2012)
  7. Beak B, Xu F, Jung C, Solid State Ion., 202(1), 40 (2011)
  8. Watanabe M, Itoh M, Sanui K, Ogata N, Macromolecules, 20, 569 (1987)
  9. Galloway JA, Koester KJ, Paasch BJ, Macosko CW, Polymer, 45(2), 423 (2004)
  10. Abraham KM, Alamgir M, J. Electrochem. Soc., 137, 1657 (1990)
  11. Appetecchi GB, Scrosati B, Electrochim. Acta, 43(9), 1105 (1998)
  12. Hong H, Liquan C, Xuejie H, Rongjian X, Electrochim. Acta, 37, 1671 (1992)
  13. Appetecchi GB, Croce F, Scrosati B, Electrochim. Acta, 40(8), 991 (1995)
  14. Bohnke O, Frand M, Rezrazi M, Rousselot C, Truche C, Solid State Ionics, 66, 97 (1993)
  15. Sukeshini AM, Nishimoto A, Watanabe M, Solid State Ion., 86-88, 385 (1996)
  16. Nagatomo T, Ichikawa C, Omoto O, J. Electrochem. Soc., 134, 305 (1987)
  17. Mohamed NS, Arof AK, J. Power Sources, 132(1-2), 229 (2004)
  18. Capiglia C, Saito Y, Kataoka H, Kodama T, Quartarone E, Mustarelli P, Solid State Ionics, 131, 291 (2001)
  19. Lee J, Kang Y, Suh DH, Lee C, Electrochim. Acta, 50(2-3), 351 (2004)
  20. Song JY, Wang YY, Wan CC, J. Power Sources, 77(2), 183 (1999)
  21. Wang Y, Travas-Sejdic J, Steiner R, Solid State Ion., 148(3-4), 443 (2002)
  22. Feuillade G, Perche Ph, J. Appl. Electrochem., 5, 63 (1975)
  23. Tsuchida E, Ohno H, Tsunemi K, Electrochim. Acta, 28, 591 (1983)
  24. Murata K, Izuchi S, Yoshihisa Y, Electrochim. Acta, 45(8-9), 1501 (2000)
  25. Choi JA, Kang Y, Shim H, Kim DW, Song HK, Kim DW, J. Power Sources, 189(1), 809 (2009)
  26. Yuan LX, Piao JD, Cao YL, Yang HX, Ai XP, J. Solid State Electrochem., 9, 183 (2005)
  27. Zhang SS, Jow TR, J. Power Sources, 109(2), 458 (2002)
  28. Hwang SS, Cho CG, Kim H, Electrochem. Commun., 12, 916 (2010)
  29. Oh S, Kim DW, Lee C, Lee MH, Kang Y, Electrochim. Acta, 57, 46 (2011)
  30. Wang FM, Wu HC, Cheng CS, Huang CL, Yang CR, Electrochim. Acta, 54(14), 3788 (2009)
  31. Gu GY, Bouvier S, Wu C, Laura R, Rzeznik M, Abraham KM, Electrochim. Acta, 45(19), 3127 (2000)
  32. Kim W, Cho JJ, Kang Y, Kim DW, J. Power Sources, 178(2), 837 (2008)