Macromolecular Research, Vol.22, No.8, 875-881, August, 2014
Synthesis and Electrochemical Properties of Gel Polymer Electrolyte Using Poly(2-(dimethylamino)ethyl methacrylate-co-methyl methacrylate) for Fabricating Lithium Ion Polymer Battery
E-mail:,
Random copolymers comprising 2-(dimethylamino)ethyl methacrylate (DMAEMA) and methyl methacrylate (MMA) are synthesized by radical polymerization using 2,2′-azobis(2-methylpropionitrile) (AIBN) as an initiator. Gel polymer electrolytes (GPEs) are prepared by in situ thermal curing using different ratios of siloxane-epoxide cross-linker to poly(DMAEMA-co-MMA) and various contents and types of liquid electrolytes. GPEs offer several advantages such as in situ thermal cross-linking without requiring an additional radical initiator, relatively shorter curing time (~3 h) and lower curing temperature. When the ratio of the siloxane-epoxide cross-linker to poly(DMAEMA-co-MMA) is 1:5, the GPE with 98 wt% liquid electrolyte exhibits the highest ionic conductivity of 8.87×10-3 S/cm at 30 ℃. The electrochemical stability window of the GPE is measured to be 5.1 V vs. Li/Li+. A unit cell comprising LiCoO2/GPE/graphite exhibits an initial discharge capacity of 145.6 mAh/g at 0.1 C, and the unit cell has good rate capability and cycling performance.
Keywords:poly(2-(dimethylamino)ethyl methacrylate-co-methyl methacrylate);gel polymer electrolyte;ionic conductivity;lithium-ion polymer battery.
- Scrosati B, Nature, 373(6515), 557 (1995)
- Scrosati B, Garche J, J. Power Sources, 195(9), 2419 (2010)
- Nishi Y, J. Power Sources, 100(1-2), 101 (2001)
- Kobayashi Y, Seki S, Yamanaka A, Miyashiro H, Mita Y, Iwahori T, J. Power Sources, 146(1-2), 719 (2005)
- Isken P, Dippel C, Schmitz R, Schmitz RW, Kunze M, Passerini S, Winter M, Lex-Balducci A, Electrochim. Acta, 56(22), 7530 (2011)
- Idris NH, Rahman MM, Wang JZ, Liu HK, J. Power Sources, 201, 294 (2012)
- Beak B, Xu F, Jung C, Solid State Ion., 202(1), 40 (2011)
- Watanabe M, Itoh M, Sanui K, Ogata N, Macromolecules, 20, 569 (1987)
- Galloway JA, Koester KJ, Paasch BJ, Macosko CW, Polymer, 45(2), 423 (2004)
- Abraham KM, Alamgir M, J. Electrochem. Soc., 137, 1657 (1990)
- Appetecchi GB, Scrosati B, Electrochim. Acta, 43(9), 1105 (1998)
- Hong H, Liquan C, Xuejie H, Rongjian X, Electrochim. Acta, 37, 1671 (1992)
- Appetecchi GB, Croce F, Scrosati B, Electrochim. Acta, 40(8), 991 (1995)
- Bohnke O, Frand M, Rezrazi M, Rousselot C, Truche C, Solid State Ionics, 66, 97 (1993)
- Sukeshini AM, Nishimoto A, Watanabe M, Solid State Ion., 86-88, 385 (1996)
- Nagatomo T, Ichikawa C, Omoto O, J. Electrochem. Soc., 134, 305 (1987)
- Mohamed NS, Arof AK, J. Power Sources, 132(1-2), 229 (2004)
- Capiglia C, Saito Y, Kataoka H, Kodama T, Quartarone E, Mustarelli P, Solid State Ionics, 131, 291 (2001)
- Lee J, Kang Y, Suh DH, Lee C, Electrochim. Acta, 50(2-3), 351 (2004)
- Song JY, Wang YY, Wan CC, J. Power Sources, 77(2), 183 (1999)
- Wang Y, Travas-Sejdic J, Steiner R, Solid State Ion., 148(3-4), 443 (2002)
- Feuillade G, Perche Ph, J. Appl. Electrochem., 5, 63 (1975)
- Tsuchida E, Ohno H, Tsunemi K, Electrochim. Acta, 28, 591 (1983)
- Murata K, Izuchi S, Yoshihisa Y, Electrochim. Acta, 45(8-9), 1501 (2000)
- Choi JA, Kang Y, Shim H, Kim DW, Song HK, Kim DW, J. Power Sources, 189(1), 809 (2009)
- Yuan LX, Piao JD, Cao YL, Yang HX, Ai XP, J. Solid State Electrochem., 9, 183 (2005)
- Zhang SS, Jow TR, J. Power Sources, 109(2), 458 (2002)
- Hwang SS, Cho CG, Kim H, Electrochem. Commun., 12, 916 (2010)
- Oh S, Kim DW, Lee C, Lee MH, Kang Y, Electrochim. Acta, 57, 46 (2011)
- Wang FM, Wu HC, Cheng CS, Huang CL, Yang CR, Electrochim. Acta, 54(14), 3788 (2009)
- Gu GY, Bouvier S, Wu C, Laura R, Rzeznik M, Abraham KM, Electrochim. Acta, 45(19), 3127 (2000)
- Kim W, Cho JJ, Kang Y, Kim DW, J. Power Sources, 178(2), 837 (2008)