화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.118, No.2, 441-448, 2014
Heterogeneous Interaction of H2O2 with Arizona Test Dust
The heterogeneous interaction of H2O2 with solid films of Arizona Test Dust (ATD) was investigated under dark conditions and in presence of UV light using a low pressure flow tube reactor coupled with a quadrupole mass spectrometer. The uptake coefficients were measured as a function of the initial concentration of gaseous H2O2 ([H2O2](0) = (0.18 - 5.1) x 10(12) molecules cm(-3)), irradiance intensity (J(NO2) = 0.002 - 0.012 s(-1)), relative humidity (RH = 0.002 - 69%), and temperature (T = 268 320 K). The initial uptake coefficient was found to be independent of the concentration of H2O2 and UV irradiation intensity and to decrease with increasing RH and temperature according to the following expressions: gamma(0) = 4.8 x 10(-4)/(1+ RH0.66) at T = 275 K and gamma(0) = 3.2 x 10(-4)/(1 + 2.5 x 10(10)exp(-7360/T)) at RH = 0.35% (calculated using BET surface area, estimated conservative uncertainty of 30%). By contrast, the steady state uptake coefficient was found to be independent of temperature, to increase upon UV irradiation of the surface, and to be inversely (gamma(ss) similar to [H2O2](-0.6)) dependent on the concentration of H2O2. The RH independent steady state uptake coefficient was measured under dark and UV irradiation conditions: gamma(SS)(dark) = (0.95 +/- 0.30) x 10(-5) and gamma(SS)(UV) = (1.85 +/- 0.55) x 10(-5), for RH = (2 - 69)% and [H2O2] congruent to 1.0 x 10(12) molecules cm(-3). The present experimental data support current considerations that uptake of H2O2 on mineral aerosol is potentially an important atmospheric process.