Journal of Physical Chemistry B, Vol.117, No.49, 15415-15425, 2013
High-Throughput Ellipsometric Characterization of Vapor-Deposited Indomethacin Glasses
A method for the high-throughput preparation and characterization of vapor-deposited organic glasses is presented. Depositing directly onto a substrate with a large temperature gradient allows many different glasses to be prepared simultaneously. Ellipsometry is used to characterize these glasses, allowing the determination of density, birefringence, and kinetic stability as a function of substrate temperature. For indomethacin, a model glass former, materials up to 1.4% more dense than the liquid-cooled glass can be formed with a continuously tunable range of molecular orientations as determined by the birefringence. By comparing measurements of many properties, we observe three phenomenological temperature regimes. For substrate temperatures from T-g + 11 K to T-g - 8 K, equilibrium states are produced. Between T-g - 8 K and T-g - 31 K, the vapor-deposited materials have the macroscopic properties expected for the equilibrium supercooled liquid while showing local structural anisotropy. At lower substrate temperatures, the properties of the vapor-deposited glasses are strongly influenced by kinetic factors. Different macroscopic properties are no longer correlated with each other in this regime, allowing unusual combinations of properties.