화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.117, No.51, 16530-16541, 2013
Hydrogen Atom in Water from Ambient to High Temperatures
The aqueous hydrogen atom is studied with molecular dynamics simulations from ambient temperature to near the critical point. The radial distribution functions find a hydrogen atom coordination number of about 13 water molecules at 300 K to about 4 water molecules at 646 K. The radial and angular distribution functions indicate that first-shell water molecules tend to orient to maximize hydrogen bonding interactions with other water molecules. These orientational tendencies diminish with temperature. The calculated diffusion coefficient agrees very well with experimental results known near ambient temperatures. It fits a simple activation model to about 575 K, above which the diffusion becomes much faster than predicted by the fit. To temperatures of at least 500 K there is evidence for caging on a time scale of about 1 ps, but the evidence disappears at very high temperatures. Values of the aqueous hydrogen hyperfine coupling constant are obtained by averaging the results of density functional calculations on clusters extracted from the simulations. The hyperfine coupling calculations do not agree well with experiment for reasons that are not understood now, pointing to the need for further research on this problem.