Journal of Physical Chemistry B, Vol.118, No.2, 449-459, 2014
Noncovalent Interactions in Microsolvated Networks of Trimethylamine N-Oxide
The effects of the formation of hydrogen-bonded networks on the important osmolyte trimethylamine N-oxide (TMAO) are explored in a joint Raman spectroscopic and electronic structure theory study. Spectral shifts in the experimental Raman spectra of TMAO and deuterated TMAO microsolvated with water, methanol, ethanol, and ethylene glycol are compared with the results of electronic structure calculations on explicit hydrogen-bonded molecular clusters. Very good agreement between experiment and theory suggests that it is the local hydrogen-bonded geometry at TMAO's oxygen atom that dominates the structure of the extended hydrogen-bonded networks and that TMAO's unique stabilizing abilities are a result of the "indirect effect" model. Natural bonding orbital (NBO) calculations further reveal that hyperconjugation results in vibrational blue shifts in TMAO's C H stretching region when solvated and a red shift in methanol's C-H stretching region when hydrogen bonding with TMAO.