Journal of Physical Chemistry B, Vol.118, No.25, 7091-7099, 2014
Catalytic Voltammetry of the Molybdoenzyme Sulfite Dehydrogenase from Sinorhizobium meliloti
Sulfite dehydrogenase from the soil bacterium Sinorhizobium meliloti (SorT) is a periplasmic, homodimeric molybdoenzyme with a molecular mass of 78 kDa. It differs from most other well studied sulfite oxidizing enzymes, as it bears no heme cofactor. SorT does not readily reduce ferrous horse heart cytochrome c which is the preferred electron acceptor for vertebrate sulfite oxidases. In the present study, ferrocene methanol (FM) (in its oxidized ferrocenium form) was utilized as an artificial electron acceptor for the catalytic SorT sulfite oxidation reaction. Cyclic voltammetry of FM was used to generate the active form of the mediator at the electrode surface. The FM-mediated catalytic sulfite oxidation by SorT was investigated by two different voltammetric methods, namely, (i) SorT freely diffusing in solution and (ii) SorT confined to a thin layer at the electrode surface by a semipermeable dialysis membrane. A single set of rate and equilibrium constants was used to simulate the catalytic voltammograms performed under different sweep rates and with various concentrations of sulfite and FM which provides new insights into the kinetics of the SorT catalytic mechanism. Further, we were able to model the role of the dialysis membrane in the kinetics of the overall catalytic system.