Journal of Polymer Science Part B: Polymer Physics, Vol.52, No.9, 618-623, 2014
The Potential Use of Electrospun Polylactic Acid Nanofibers as Alternative Reinforcements in an Epoxy Composite System
This pilot study elaborates the development of novel epoxy/electrospun polylactic acid (PLA) nanofiber composites at the fiber contents of 3, 5, and 10 wt % to evaluate their mechanical and thermal properties using flexural tests and differential scanning calorimetry (DSC). The flexural moduli of composites increase remarkably by 50.8 and 24.0% for 5 and 10 wt % fiber contents, respectively, relative to that of neat epoxy. Furthermore, a similar trend is also shown for corresponding flexural strengths being enhanced by 31.6 and 4.8%. Fractured surface morphology with scanning electron microscopy (SEM) confirms a full permeation of cured epoxy matrix into nanofiber structures and existence of nondestructive fibrous networks inside large void cavities. The glass transition temperature (T-g) of composites increases up to 54-60 degrees C due to embedded electrospun nanofibers compared to 50 degrees C for that of epoxy, indicating that fibrous networks may further restrict the intermolecular mobility of matrix in thermal effects. (c) 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 618-623