Journal of Power Sources, Vol.210, 38-41, 2012
Elucidating the role of ultrathin Pt film in back-illuminated dye-sensitized solar cells using anodic TiO2 nanotube arrays
We have systematically studied the effects of ultrathin platinum catalytic films in the sub-10 nm regime on the performance of the back-illuminated dye-sensitized solar cells using anodic TiO2 nanotube arrays. Results indicate that the maximum power conversion efficiency is achieved with a platinum film of 2.48 nm thickness. The charge transfer resistance sharply decreases from 6.39 Omega cm(-2) (1.24 nm) to 0.24 Omega cm(-2) (2.48 nm); however, subsequently, it keeps on increasing to 0.76 Omega cm(-2) (3.72 nm) and 1.36 Omega cm(-2) (5.58 nm); finally, it re-decreases to 0.25 Omega cm(-2) (8.06 nm), and remains stable afterwards. The platinum film morphology and particle size on the counterelectrode have been demonstrated to play an important role in catalytic activity in the ultrathin thickness range. This study is meaningful from the aspect of improving the performance of the back-illuminated devices and reducing cost; and meanwhile sheds light on the main factors of influencing catalytic activity in the ultrathin catalytic films. (C) 2012 Elsevier B.V. All rights reserved.
Keywords:Back-illuminated dye-sensitized solar cell;Ultrathin platinum film;Counterelectrode;Transmittance;Catalytic activity