화학공학소재연구정보센터
Journal of Power Sources, Vol.216, 48-66, 2012
Where do poly(vinyl alcohol) based membranes stand in relation to Nafion (R) for direct methanol fuel cell applications?
Though fuel cells have been considered as a viable energy conversion device, their adaptation for practical applications has been facing certain challenging issues regarding the availability of appropriate materials and components. For low temperature fuel cells, membranes that are cost effective and also competitive to Nafion (R) are the major requirements especially for Direct Methanol Fuel Cells (DMFC). Proton conductivity and methanol crossover are the two main characteristics that are of great concern for the development of suitable, alternate, and viable membranes for DMFC applications, though other factors including environmental acceptability are also important. In this regard, in recent time's poly(vinyl alcohol) based membranes have been developed as a viable alternative. This presentation therefore assesses the technological advances that have been made and the impediments that are faced in this development. This critical assessment exercise, it is presumed, may contribute toward a speedy development of this critical component for a viable fuel cell based energy economy. (c) 2012 Elsevier B.V. All rights reserved.