화학공학소재연구정보센터
Journal of Power Sources, Vol.245, 787-795, 2014
Creep rupture of the joint of a solid oxide fuel cell glass-ceramic sealant with metallic interconnect
Creep properties of sandwich joint specimens made of a newly developed BaO-B2O3-Al2O3-SiO2 glass-ceramic sealant (GC-9) and a ferritic-stainless-steel interconnect (Crofer 22 H) for planar solid oxide fuel cells (pSOFCs) are investigated at 800 degrees C under constant shear and tensile loadings. The creep rupture time of Crofer 22 H/GC-9/Crofer 22 H joint specimens is increased with a decrease in applied load for both shear and tensile loading modes. The given metal/sealant/metal joint has a greater degradation of joint strength at 800 degrees C under prolonged, constant tensile loading as compared to shear loading. The tensile creep strength at a rupture time of 1000 h is about 9% of the average tensile joint strength, while the shear creep strength at 1000 h is about 23% of the average shear joint strength. Failure patterns of both shear and tensile joint specimens are similar regardless of the creep rupture time. In general, creep cracks initiate at the interface between the (Cr,Mn)(3)O-4 spinel layer and the BaCrO4 chromate layer, penetrate through the BaCrO4 layer, and propagate along the interface between the chromate layer and glass-ceramic substrate until final fracture. Final, fast fracture occasionally takes place within the glass-ceramic layer. (C) 2013 Elsevier B.V. All rights reserved.