Journal of Power Sources, Vol.260, 12-18, 2014
Effect of stabilizers on the synthesis of palladium-nickel nanoparticles supported on carbon for ethanol oxidation in alkaline medium
PdNi/C electrocatalysts for ethanol oxidation in alkaline medium are fabricated using four stabilizers, i.e., glycine (G), ethylene diamine tetraacetic acid (EDTA), sodium citrate (SC), and sodium dodecyl sulfate (SDS) with the same reducing process and reaction parameters. X-ray diffraction characterization shows PdNi nanoparticles for all PdNi/C electrocatalysts possess face-centered cubic structure with different alloying degree. TEM results show that PdNi/C-G and PdNi/C-SC have uniform dispersion with ellipse morphology, while particle agglomeration occurs on PdNi/C-EDTA and PdNi/C-SDS. Electrocatalytic activities of these PdNi/C electrocatalysts for ethanol oxidation are measured by cyclic voltammetry and chronoamperometry techniques. The electrocatalytic activities of PdNi/C change with the different lattice contraction. PdNi/C-SC electrocatalyst exhibits the best activity among the four electrocatalysts, which is ascribed to an appropriate lattice contraction. (C) 2014 Elsevier B.V. All rights reserved.