화학공학소재연구정보센터
Journal of Power Sources, Vol.262, 356-363, 2014
PdM nanoparticles (M = Ni, Co, Fe, Mn) with high activity and stability in formic acid oxidation synthesized by sonochemical reactions
Bimetallic alloy PdnM (n = 1 for M = Mn, Fe, and Co; n = 1, 2, and 3 for M = Ni) nanoparticles (NPs) are synthesized on carbon supports by sonochemical reactions of Pd(acac)(2) (acac = acetylacetonate) with M(acac)(2) (M = Ni, Co, Mn) or Fe(acac)(3) in ethylene glycol. The NPs are characterized by powder X-ray diffractometry, transmission electron microscopy (TEM), and inductively coupled plasma-atomic emission spectroscopy to determine their crystal structures, particle sizes, morphology, and elemental compositions. Alloy formation of the NPs is proven by energy dispersive X-ray spectroscopy line profiles using scanning TEM. The electronic structures and the surface compositions of NPs are analyzed using Xray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy, respectively. PdnM NPs are applied as electrocatalysts for formic acid oxidation. The incorporation of M in Pd reduces the poisoning by surface hydroxyl groups. Activities based on the current densities are in the order of PdNi > PdFe > PdCo > PdMn. Within the PdnNi series, the activity is in the order of PdNi > Pd2Ni > Pd3Ni. The PdnM NP electrocatalysts show higher activity by a factor of 2-3.5 and improved durability than similarly prepared Pd NP electrocatalyst. (C) 2014 Elsevier B.V. All rights reserved.