화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.136, No.26, 9477-9483, 2014
A Thienoisoindigo-Naphthalene Polymer with Ultrahigh Mobility of 14.4 cm(2)/V.s That Substantially Exceeds Benchmark Values for Amorphous Silicon Semiconductors
By considering the qualitative benefits associated with solution rheology and mechanical properties of polymer semiconductors, it is expected that polymer-based electronic devices will soon enter our daily lives as indispensable elements in a myriad of flexible and ultra low-cost flat panel displays. Despite more than a decade of research focused on designing and synthesizing state-of-the-art polymer semiconductors for improving charge transport characteristics, the current mobility values are still not sufficient for many practical applications. The confident mobility in excess of similar to 10 cm(2)/V.s is the most important requirement for enabling the realization of the aforementioned near-future products. We report on an easily attainable donor-acceptor (D-A) polymer semiconductor: poly(thienoisoindigo-alt-naphthalene) (PTIIG-Np). An unprecedented mobility of 14.4 cm(2)/V.s, by using PTIIG-Np with a high-k gate dielectric poly(vinylidenefiuoride-trifluoroethylene) (P(VDF-TrFE)), is achieved from a simple coating processing, which is of a magnitude that is very difficult to obtain with conventional TFTs by means of molecular engineering. This work, therefore, represents a major step toward truly viable plastic electronics.