화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.136, No.28, 9999-10006, 2014
Shape-Changing and Amphiphilicity-Reversing Janus Particles with pH-Responsive Surfactant Properties
Janus particles are biphasic colloids that have two sides with distinct chemistry and wettability. Because of their amphiphilicity, Janus particles present a unique opportunity for stabilizing multiphasic fluid mixtures such as emulsions. Our work is motivated by one class of molecular amphiphiles that change their surfactant properties in response to environmental stimuli. Depending on the environmental conditions, these stimuli-responsive molecular amphiphiles are able to assemble into different structures, generate emulsions with different morphologies, and also induce phase inversion emulsification. We present a new synthesis method utilizing a combination of polymerization-induced phase separation and seeded emulsion polymerization, which allows for the bulk synthesis of highly uniform pH-responsive Janus particles that are able to completely reverse their surfactant properties in response to solution pH. One side of these Janus particles is rich in a hydrophobic monomer, styrene, whereas the other side is rich in a pH-sensitive hydrophilic repeating unit, acrylic acid. These Janus particles change their aggregation/dispersion behavior and also transform into different shapes in response to pH changes. Furthermore, we demonstrate that these Janus particles can stabilize different types of emulsions (oil-in-water and water-in-oil) and, more importantly, induce phase inversion of emulsions in response to changes in solution pH. The pH-responsive aggregation/dispersion behavior of these Janus particles also allows us to tune the interactions between oil-in-water emulsion droplets without inducing destabilization; that is, emulsion drops with attractive or repulsive interactions can be generated by changing the pH of the aqueous phase. Our study presents a new class of colloidal materials that will further widen the functionality and properties of Janus particles as dynamically tunable solid surfactants.