화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.136, No.31, 11050-11056, 2014
An Electrochemically Switched Smart Surface for Peptide Immobilization and Conformation Control
We report an electrochemically switched smart surface for controlled peptide immobilization and conformation control. This dynamic surface is based on self-assembled monolayers (SAMs) containing surface-bound trimethoxybenzene moieties, which can undergo electrochemically modulated surface activation to be stepwisely converted to two catechol derivatives. This new smart surface can be used to realize stepwise immobilization of a peptide, and more importantly, to control peptide conformation on a surface. We demonstrate herein that with one electrochemical activation step, a linear peptide containing an RGD sequence can be attached onto the SAMs. With the subsequence activation step, the attached linear RGD peptide can be converted into cyclic conformation. The SAMs bounded with linear and cyclic RGD exhibit different adhesion behaviors to fibroblasts cells. The reaction procedure can be well-monitored by cyclic voltammetry (CV), electrochemical surface enhanced Raman microscopy (EC-SERS), and X-ray photoelectron spectroscopy (XPS). It is believed this robust smart surface can find wide applications in surface immobilization of bioactive moieties.