화학공학소재연구정보센터
Journal of the Electrochemical Society, Vol.161, No.3, A318-A325, 2014
Quantifying Hysteresis and Voltage Fade in xLi(2)MnO(3)center dot(1-x)LiMn0.5Ni0.5O2 Electrodes as a Function of Li2MnO3 Content
presented. Three distinct processes have been identified and tracked during extended electrochemical cycling. In addition to the standard intercalation behavior typical of layered metal oxide electrodes, two additional electrochemical phenomena, manifest as hysteresis and continuous voltage fade, are found to be directly related to one another. These two processes are a consequence of the Li2MnO3 component in the electrochemical reaction. This finding, coupled to X-ray absorption data, reveals that lithium and manganese ordering plays a significant role in the voltage degradation mechanisms of high-capacity lithium-and manganese-rich composite electrode structures. In general, all xLi(2)MnO(3)center dot(1-x)LiMO2 (M = Mn, Ni, Co) electrode materials possess this feature and are subject to similar degradation after activation (>4.5 V) and during high voltage (>4.0 V) cycling. The data highlight the practical importance of limiting the amount of Li2MnO3 and/or the extent of activation in these composite structures, thereby providing electrode stability to counteract voltage and hysteresis. (C) 2013 The Electrochemical Society. All rights reserved.