Langmuir, Vol.29, No.49, 15146-15158, 2013
Supramolecular Assemblies of Amide-Derived Organogels Featuring Rigid pi-Conjugated Phenylethynyl Frameworks
Organogels, being an important class of soft materials, have evolved to be one of the most attractive subjects bridging supramolecular chemistry and material sciences due to their structural diversity and associated physical properties. Myriad applications in fields such as optoelectronics, light harvesting, environmental science, and regenerative medicine are being envisaged. Supramolecular gels usually are formed through self-aggregation of small-molecule gelators to form entangled self-assembled fibrillar networks through a combination of non covalent interactions such as hydrogen bonding, pi-pi stacking, electrostatic forces, donor acceptor interactions, metal coordination, solvophobic forces, and van der Waals interactions. This feature article discusses recent and current state of research on amide derived organogelators bearing rigid conjugated phenylethynyl building blocks. Selective examples from our works along with some closely related examples from literature have been highlighted to showcase the structural diversity and their potential applications in supramolecular chemistry and materials science.