- Previous Article
- Next Article
- Table of Contents
Langmuir, Vol.30, No.19, 5363-5367, 2014
Electroactive Nanobiomolecular Architectures of Laccase and Cytochrome c on Electrodes: Applying Silica Nanoparticles as Artificial Matrix
Fully electroactive multilayer architectures combining the redox protein cytochrome c and the enzyme laccase by the use of silica nanoparticles as artificial matrix have been constructed on gold electrodes capable of direct dioxygen reduction. Laccase form Trametes versicolor and cytochrome c from horse heart were electrostatically coimmobilized by alternate deposition with interlayers of silica nanoparticles in a multilayer fashion. The layer formation has been monitored by quartz crystal microbalance. The electrochemical properties and performance of the nanobiomolecular entities were investigated by cyclic voltammetry, indicating, that a multistep electron transfer cascade, from the electrode via cytochrome c in the layered system toward the enzyme laccase, and here to molecular dioxygen was achieved. The response of the novel architecture is based on direct electron exchange between immobilized proteins and can be tuned by the assembly process.