화학공학소재연구정보센터
Langmuir, Vol.30, No.23, 6852-6857, 2014
Self-Assembled Monolayers of Cholesterol and Cholesteryl Esters on Graphite
The molecular arrangements of self-assembled monolayers (SAMs) of cholesterol, cholesteryl laurate, and cholesteryl stearate adsorbed on a graphite surface were studied using scanning tunneling microscopy (STM) at the liquid-solid interface. The STM images of the SAMs showed two-dimensional periodic arrays of bright regions that corresponded to the sterol rings. However, individual sterol rings could not be observed in the bright regions in the STM images of the cholesterol monolayers. Nevertheless, by comparing the STM images and the crystallographic data, it is concluded that the cholesterol molecules are arranged in pairs oriented head-to-head owing to the hydrogen bonds between the hydroxyl groups. These dimers, in turn, are oriented parallel to each other, owing to the interactions between the sterol rings. The STM images of cholesteryl ester monolayers had molecular resolution and showed pairs of cholesteryl ester molecules oriented in an antiparallel manner, with their fatty acid chains located in the central regions. Furthermore, the fatty acid chains of cholesteryl stearate were observed to be oriented in the (11 (2) over bar0) zigzag direction of the graphite lattice, whereas those of cholesteryl laurate were oriented in the (10 (1) over bar0) armchair direction. These observations reveal that the interactions between the fatty acid chains affect the structure of the SAMs. The molecular arrangements also depend on the lengths of the fatty acid chains of the cholesterol esters and hence on the interactions between the alkyl chains and the graphite surface. The self-assembly at the liquid-solid interface is therefore controlled by the interactions between sterol rings, between alkyl chains, and between alkyl chains and the substrate.