Langmuir, Vol.30, No.24, 7213-7220, 2014
One-Step Interfacial Thiol-Ene Photopolymerization for Metal Nanoparticle-Decorated Microcapsules (MNP@MCs)
We herein reported a one-step strategy to prepare the noble metal nanoparticle-decorated microcapsules (MNP@MCs) through the interfacial thiol-ene photopolymerization. In the presence of amphiphlic polyhedral oligomeric silsesquioxane (POSS) containing thiol groups (PTPS) as a reactive surfactant and trimethylolpropane triacrylate (TMPTA) as a cross-linker, the oil phase of toluene dissolved with a photoinitiator was emulsified into a water phase containing a metal precursor to form an oil-in-water (O/W) emulsion. Upon irradiation of ultraviolet (UV) light, the thiol-ene photo-ploymerization and photoreduction at the interface of toluene/water lead to the formation of the cross-linked wall and metal nanoparticles, respectively. A series of gold, silver, and platinum nanoparticle-decorated microcapsules (AuNP@MC, AgNP@MC, and PtNP@MC) were prepared through this one-step interfacial thiol-ene photopolymerization and were characterized carefully by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The results revealed that the obtained MNP@MCs were 2.2-2.7 mu m in diameter with a wall of 40-70 nm in thickness, which was covered with the metal nanoparticles. The size and amount of metal nanoparticles increased with the increasing concentration of the metal precursor in water. Furthermore, the catalyst performance of AuNP@MC was studied by reduction of aromatic nitro compounds and exhibited the enhanced catalytic activity and good stability in the reduction of hydrophobic nitrophenol. It is believed that this robust, convenient, simple strategy based on the one-step interfacial thiol-ene photopolymerization will provide an important alternative to fabricate the functional metal nanoparticle-modified microcapsules.