Langmuir, Vol.30, No.26, 7724-7735, 2014
Membrane Interactions of Fusogenic Coiled-Coil Peptides: Implications for Lipopeptide Mediated Vesicle Fusion
Fusion of lipid membranes is an important natural process for the intra- and intercellular exchange of molecules. However, little is known about the actual fusion mechanism at the molecular level. In this study we examine a system that models the key features of this process. For the molecular recognition between opposing membranes two membrane anchored heterodimer coiled-coil forming peptides called 'E' (EIAALEK)(3) and 'K' (KIAALKE)(3) were used. Lipid monolayers and IR reflection absorption spectroscopy (IRRAS) revealed the interactions of the peptides 'E', 'K', and their parallel coiled-coil complex 'E/K' with the phospholipid membranes and thereby mimicked the pre- and postfusion states, respectively. The peptides adopted alpha-helical structures and were incorporated into the monolayers with parallel orientation. The strength of binding to the monolayer differed for the peptides and tethering them to the membrane increased the interactions even further. Remarkably, these interactions played a role even in the postfusion state. These findings shed light on important mechanistic details of the membrane fusion process in this model system. Furthermore, their implications will help to improve the rational design of new artificial membrane fusion systems, which have a wide range of potential applications in supramolecular chemistry and biomedicine.