화학공학소재연구정보센터
Materials Chemistry and Physics, Vol.144, No.1-2, 122-131, 2014
In situ generated silica in natural rubber latex via the sol-gel technique and properties of the silica rubber composites
Natural rubber (NR) composites reinforced by silica generated in situ within the NR matrix were prepared by the sol gel process using tetraethoxysilane (TEOS) as the silica precursor. The effect of the TEOS content, water: TEOS mole ratio, reaction time and temperature on the in situ silica content formed in the NR latex were investigated. The results indicated that the suitable condition to produce a high silica content (54 parts by weight per hundred parts of rubber (phr)) in the rubbery matrix was the use of 200 phr TEOS and a water: TEOS mole ratio of 28.9:1 at room temperature for 24 h. The curing, mechanical, and thermal properties of the composite materials were also investigated. Increasing the in situ silica content increased the cure time and improved the mechanical properties of the composite. Compared to the NR vulcanizates filled with the commercial (ex situ formed) silica, the mechanical and thermal properties of the in situ silica composite material were significantly improved. Transmission electron microscopy revealed that the in situ formed silica particles were well distributed within the NR matrix, in contrast to the clumping of the ex situ formed commercial silica within the NR matrix. (C) 2013 Elsevier B.V. All rights reserved.