화학공학소재연구정보센터
Materials Research Bulletin, Vol.49, 454-461, 2014
Study of electronic transport in gamma ray exposed nanowires
One dimensional nanostructures provide the most restricted and narrow channel for the transport of charge carriers and therefore 1D structures preserve their significance from the viewpoint of electronic devices. The net radiation effect on nanomaterials is expected to be more (due to their increased reactivity and lesser bulk volume) than their bulk counterparts. Radiation often modifies the structure and simultaneously the other physical properties of materials. In this manner, the irradiation phenomenon could be counted as a strong criterion to induce changes in the structural and electrical properties of nanowires. We have studied the effect of gamma rays on the electronic flow through Cu and Cd nanowires by plotting their I-V characteristics (IVC). The IVC of gamma ray exposed nanowires was found to be a combination of the linear and nonlinear regions and a decreasing pattern in the electrical conductivity (calculated from the linear portion of IVC) was observed as we increased the dose of gamma rays. (C) 2013 Elsevier Ltd. All rights reserved.