Materials Science Forum, Vol.509, 87-92, 2006
Micro and macromechanical study of stress-induced martensitic transformation in a Cu-Al-Be polycrystalline shape memory alloy
An experimental investigation of the micro and macromechanical stress-induced martensitic transformation in a Cu-Al-Be polycrystalline shape memory alloy is undertaken using a uniaxial tension test. Digital images are acquired at different stress states. The image sequences are analyzed to estimate the optical flow to get displacement vector fields. The experiments are carried out on a miniature hydraulic loading device mounted under an optical microscope. The stress-strain curves and associated images show stress-induced martensitic transformation in specific grains. Displacement vector fields for the polycrystalline shape memory alloy are obtained. They are inhomogeneous due to the martensitic transformation and inter-granular interactions.