화학공학소재연구정보센터
Materials Science Forum, Vol.510-511, 58-61, 2006
Photocatalytic properties of mesoporous TiO2 films derived from evaporation-induced self-assembly method
Hexagonal and cubic mesoporous TiO2 films were prepared by using triblock copolymer-templated sol-gel method via evaporation-induced self-assembly (EISA) process. The mesophase of TiO2 film was controlled by spin-speed during the spin-coating process. The hexagonal mesoporous structure was formed at a high spin-speed around 2000 rpm, whereas the cubic mesostructure was formed at a low spin-speed around 600 rpm. XRD and TEM results indicate that those mesostructures are highly organized with a pore diameter of 7 nm. The prepared cubic and hexagonal mesoporous films were tested as photocatalysts for the decomposition of 2-propanol in gas phase. Both films presented considerably higher photocatalytic activity than a nonporous TiO2 films prepared by a typical sol-gel process without addition of triblock copolymer. Notably, we found that the cubic mesoporous films showed a relatively higher photocatalytic activity than the hexagonal mesostructured film. We believe this is due to the orientation of pore channels open on the surface of mesoporous films.